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Abstract. All possible graded extensions of the Poincare Lie algebra are constructed. 
Massless P2 = 0 representations of these algebras are investigated and it is found that the 
usual conditions on massless particle helicity states necessarily imply constraints on the 
spinorial generators. It is shown that these constraints are not consistent with the graded Lie 
algebra, except in the case of conventional supersymmetry. It follows that massless 
representations of such algebras are forbidden. 

1. Introduction 

One of the more exciting developments of the supersymmetry concept has been the 
introduction of supergravity by Freedman et a1 (1976) and Deser and Zumino (1976). 
More recently the pure supergravity theory has been extended to include matter 
couplings, with a special kind of coupling being described by the so-called O(n)-  
extended supergravity. The largest of these models (if there are no helicity states 
greater than two) has an SO(8) internal symmetry and provides a unified gauge theory 
for describing all interactions; strong, weak, electromagnetic and gravitational. This is 
a true unified model, for not only does it contain all interactions but all particles lie in 
one supermultiplet. Nevertheless, as Gell-Mann (1977) has pointed out, the model 
does have phenomenological difficulties. The internal symmetry group SO(8) does not 
contain the desired minimal gauge group SU(3) x SU(2) x U( 1) required to describe the 
strong, weak and electromagnetic sectors, and missing from the particle supermultiplet 
are several particles (e.g. muon and its neutrino) which are known to exist experiment- 
ally. This suggests that the model is not quite large enough, and instead we should 
perhaps consider O(9) or O(10) models, although this would mean removing the 
restriction that the highest helicity is two. There are no conclusive arguments for or 
against these higher spin fields and recently there have been investigations into field 
theories with spin $ (Berends et a1 1979), pure supergravity with spin 2 and spin 5 
(Tchrakian 1979), and massless supersymmetric Lagrangians with arbitrary spin 
(Curtright 1979). However, a requirement that any spin-? fields are gauge fields would 
imply a symmetry or supersymmetry with spin-: generators, and the existence of such 
symmetries in a massive theory is strictly forbidden by the theorem of Haag etal(l975). 
No complete or satisfactory discussion of the zero mass situation was attempted by 
these authors. In this paper we demonstrate that massless theories with such higher spin 
supersynimetries are also forbidden. We do this by first constructing all possible graded 
extensions of the Poincar6 algebra and then show that if the massless P 2  = 0 represen- 
tations of such algebras satisfy all the usual massless particle helicity conditions, the 
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fermionic generators must satisfy a set of constraints. We show that, apart from the case 
where the fermionic generators are spin-; operators, the constraints are not consistent 
with the supersymmetry algebra and so deduce that massless representations are 
forbidden. This in turn prevents the construction of a conventional gauge theory with 
the gauge fields belonging to massless representations. 

2. Graded extensions of the Poincare algebra 

Our analysis of the possible graded extensions of the PoincarC algebra follows closely 
the work of Konopel’chenko ( 1 9 7 7 ) .  We start by expressing all the generators in 
two-component spinor notation with dotted and undotted indices (see for example 
Zumino 1 9 7 4 ) .  The operator Shi;k!a2it;l...t;2k then transforms as the D(j ,  k )  represen- 
tation of the Lorentz group SL(2, e). 

The generators of Lorentz transformations, JFu, are replaced by two symmetric spin 
tensors Jab and .&& which transform according to the representations D ( 1 , O )  and D(0, 1) 
respectively and the translation generator P, is replaced by Pat; (representation D($, i)). 
The connection between the tensor notation and the dotted and undotted indices is 
then given by 

J F Y  :[(C,.L )ad (CY ) bc Jab (VF ) a i  (CY )ad.Tfd I, 
Jab = ( g F ) a & ( f l u ) b i ( J F u / 2 ) ,  -L = ( r w , ) a c ( C v ) a d (  J F u / 2 ) ,  ( 1 )  

P,  = ( ~ F ) a t ; ( P a t ; / 2 ) ,  Pat; = ( g F ) a d ’ , ,  

where crF = (1, vi) are the Pauli matrices:. 

and Pib: =Pat; (where t denotes Hermitian conjugation). 
If the original generators are represented by Hermitian operators, then &t; = J : b  

The PoincarC algebra can now be written as 

[Jab, JcdI = i ( E a J b d  i- E b J a d  + EadJcb + EhdJca), 
- -  

[Jbt;, Jid] = i(EdJ&d + E & &  + ebdjLb: + ~ b : & ~ ) ,  
( 2 )  

[Jab, LI = 0 ,  

[&b, P,J] = i(EbdPct; + E ~ : B P ~ ~ ) ,  

[Jab, Pcdl= i(EacPbd + E b c P a d ) ,  

[Pat;, P c d l =  0. 

This algebra is then extended to a graded Lie algebra by adding ‘odd’ generators 

We have chosen Q ( i 3 k ’  to transform under Lorentz transformations according to the 
representation D(j ,  k )  and at this stage we have not defined the commutator bracket 
[Pat;, Q ( j S k ’ ] .  To preserve the correct spin statistics the Q(i7k’  must be spinors or 
spinor-tensors, that is j + k must be half-integral (Streater and Wightman 1 9 6 4 ) .  

Q a l , , , a 2 i t ; l . , , t ; z k  ( i , k )  which transform according to some representation of the PoincarC group. 

Under Lorentz transformations Q ( j S k ’  transforms as 

t Summation over repcaied spin indices (dotted or undotted) is defined as X,Y, = XaeabYb = X I  Y2  - X 2  Y1 
and Xd Yd = Xiedt; Yb =Xi Y i  - X i  Y i .  
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where Sym.,., denotes symmetrisation with respect to the corresponding set of indices. 
To close the algebra we have to define the commutator [Pa6, Q”,k’] and anticommutator 
{Q” ,k ’ ,  Q ( f T k ’ } .  Possible candidates for the closure of these (anti)commutators can be 
found by an examination of the decomposition of the two-tensor products D($, $) x 
D(j ,  k) and D(j ,  k) x D ( j ,  k). We have 

D ( f ,  $) x D(j ,  k )  = D ( j  + 4, k + $) + D ( j  + f, k - $) + D ( j  - 1, k + $) + D ( j  - $, k - f), 
( 4 a )  

D ( j , k ) x D ( j , k ) = D ( 2 j , 2 k ) +  . .  . +D(O,O). ( 4 6 )  
As there is no generator in our algebra transforming by any of the representations on 
the right-hand side of ( 4 a )  the commutator [P, Q‘”k’] must be zero and from ( 4 b )  we see 
that the only possibility for the anticommutator {Q”*k’,  Q ( j g k ’ )  is for it to be proportional 
to Jab or fib;. However we may use the generalised Jacobi identity (Kac 1977) 

[A, [B, Cll= [ [A,  BI, Cl + (-l)“PIB, [A, Cll, ( 5 )  

where [ , ] is a generalised bracket product such that [A, B] = (-1)@[B, A], and a, p 
are zero if A,  B are even generators and one if A, B are odd generators, to determine 
the constant of proportionality. A simple substitution shows this to be zero.? Thus 
there is no extension of the PoincarC algebra by a single spinor generator Qh‘;k~a,,b;l...t;zk. 

We now investigate algebras containing two spinor generators, Q ( j V k ’  and 6(i’3k’’. 
We follow the same procedure as before but to close the algebra, we now have to define 
the following commutators and anticommutators: [P, Q], [P, 61, {a, Q}, {6, 6) and 
{Q, 6). This requires an examination of the following tensor products (besides ( 4 ) )  

D(4, 4) x D ( j ’ ,  k’) = D(  j ’  + 1, k’ + $) + D ( j ’  + $, k’ - 4) + D(j’  - $, k’ + 4) 
+D(j’-%, k’-$), (6a 1 
D(j ,  k ) + D ( j ’ ,  k ’ ) = D ( j + j ’ ,  k+k‘)+ . . . +D(lj-j’l, l k -k ’ l ) .  ( 6 b )  

There are now several possibilities. The first is to take j - j ’ = O  and Ik-k‘l= 1 
(alternatively l j  -if/= 1, k - k’ = 0) leaving us with [P, Q] and [P, 61 both zero, and 
{Q, 6}, {Q, Q} and (6, 6) all proportional to either J a b  or ji6. As in the case of a single 
spinor generator Q ( j S k ’  the generalised Jacobi identity ( 5 )  may be used to show that all 
the constants of proportionality are zero. 

The other possibility open to us is to take 1 j - f  and Ik-k’l =i, allowing the 
commutation relations 

[P, Ql- 6, [p, GI - Q, {Q, Ql- P ( 7 a )  

We have already indicated that the anticommutation relations in ( 7 b )  are zero by the 
generalised Jacobi identity (5). This leaves the (anti)commutators (7a )  to be defined. 
Before doing this we note that the conditions / j  - j ’ l =  i, /k - k’l = $ separate into two 
classes: (i) the algebra contains spinor generators Q ‘ j S k ’  and 6(j-1/2,k+1/2) and (ii) the 
algebra contains spinor generators Q”3k’ and 6(i+1/2,k+1/2) , Furthermore we can 
restrict the possibilities even further by requiring Hermitian representations. Under 

t This is not true for Q‘:.’) or Q(ost) , but eventually this can be made zero by asking for the theory to be 
invariant under Hermitian conjugation-so we take the constant to be zero in general. 
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Hermitian conjugation a representation D(j ,  k )  of the Lorentz group goes over to a 
representation D(k,  j ) .  Thus an algebra can only have an Hermitian representation if it 
contains both the generators Q"3k' and d(k3i). It is easy to see that this requirement is 
only satisfied by generators in class (i), in which case the PoincarC algebra is extended by 
spinorial generators Q (i,i-1/2) and G(i-l/Z,i) 

We can now write out the commutation relations (7a)  explicitly: 

( 8 ~ )  

(86) 

( j , j - I / Z )  - ( j - 1 / 2 4  , 

[ P a &  Q a l  ... azibl . . .bz,-1I = A  SYm € a a I Q a z  ... azibbl.,.bzi..l' 
a j ... azl 

- ( j - l / Z , i )  ( j . i - t / Z )  . , 
[ P a b ,  Qal. . .azi-l  bl...bzjI = B  Sym ~ b i ; ~ Q  aa1.. .a21-~ b2 ... b29 

b 1. ..bZl 

( 8 c )  

The values of the constants A, B and C are determined by substitution into the 
generalised Jacobi identity ( 5 ) .  This yields AB = 0, AC = 0 and BC = 0, so that there 
are three possibilities: (i) A # 0, B = 0, C = 0 ,  (ii) A := 0 = C, B # 0, and (iii) A = B = 0, 
C # 0. These yield the corresponding algebras: 

( 9 a )  

[P, 01 = 0 ,  {Q, 0)  = 0, {Q, 01 = 0, {G,d) = 0, (9b)  

( l o a )  

- - C Sym e a l c 1  I . . E a z i + l c 2 i - 1 ~ b l d l  . ~ t ; ~ ~ - ~ r i ~ ~ - ~ P a ~ , d ~ ~ .  
a,b,c,d 

( j j - l / Z ) ,  Q(j-I/Z.i), , , (8 [&b, Qa;. . ,azi  b l . , . b 2 , - l I = A  Sym eaul  a2 ... a Z j  b b , . . . b L , - l ~  
a l . .  .azj  

- ( j - I / Z , j )  ( j , j - 1 / 2 )  . , (ii) [ F a h ,  Qal. . .azj-I  b1...bzII = B  SYm E b b l Q a a l  ... az,-l bz ... bzj, 
bl...b21 

[P, Q l =  0, {Q, 0)  = 0 ,  {Q, QI = 0, {Q, 61 = 0, 
( l o b )  

We can impose even further restrictions on the choice of algebras by noting that for 
algebras of type (i) or (ii) P, no longer commutes with Q or d so P2 is not an invariant of 
the algebra (that is the theory would have a continuous mass spectrum). Furthermore 
these algebras are not invariant with respect to Hermitian conjugation and so do not 
have Hermitian representations. Hence, if we eliminate these algebras as not physical, 
we are left with one possible form of graded extension of the Poincart algebra. This 

satisfy- 
ing the algebra (11). 
involves spinorial generators Q(i9i--1'2) and the Hermitian conjugates Q - ( i - l / Z . i )  

3. Massless representations 

In all the algebras constructed in § 2 we assumed that P, commuted with the spinorial 
charges Q and d and so P2 is a Casimir of the algebra. The irreducible representations 
of the algebra may then be classified according to the eigenvalues of P2.  These fall into 
four classes: (i) P2 > 0, (ii) P2 < 0, (iii) P2 = 0, P, # 0 and (iv) P, = 0. Here we will study 
the possible P2 = 3, F, # 0 representations of the supersymmetry algebras (1 1). These 
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massless representations are of particular interest for the construction of a conventional 
gauge version of the algebra with the gauge fidds belonging to a massless represen- 
tation. 

We begin our analysis of massless P’ = 0 irreducible representations of the super- 
symmetry algebras by assuming that they are completely reducible into P’ = 0 
representations of the PoincarC algebra. These representations (P’ = 0) of the PoincarC 
algebra then fall into two classes (Volkel 1977). The first involves an infinite series of 
one-dimensional representations of the ‘little algebra’ (in this case the algebra of the 
Euclidean group E2), characterised by A = 0, *$, * 1, , . . . The corresponding states are 
interpreted as particles with zero mass and helicity h = 0, *$, *l, . . . . The second class 
involves infinite-dimensional unitary representations of the algebra, and as yet there 
has been no physical application of these-they would imply continuous spin spectra. In 
the reduction of P’ = 0 supersymmetric representations to P 2  = 0 PoincarC represen- 
tations we assume only the first class arises. 

With these assumptions we know that for P 2  = 0 supersymmetric representations of 
the PoincarC algebra, the Pauli-Lubanski vector 

(12) v P C  w, = &,,,P J 

p ’ = w 2 = 0  
satisfies 

and the helicity A becomes a Casimir of the PoincarC algebra with the generators 
satisfying the constraint (Boyce et a1 1967) 

W ,  = AP, 

A = P ~ ~ ~ ~ u p u P u J p u .  
where 

Now consider any tensor operator T:;k?,,, t;l...l;zr which commutes with P’ and 
transforms as the D(j ,k)  representation of the Lorentz group. Since [P’, T(i ,k ’ ]  = 0, 
T”,k’ must necessarily transform massless states into massless states for P’jm = 0) = 
Olm = 0 )  = 0, and so 

P’lm = 0 )  = 0. (14) p 2 ~ ( j , k )  I m  = 0 )  = T(j.k) 

This property must be consistent with the constraint (13) in the sense that 

[ W,, T”*k’]  = [AP,, T”,k’] .  

whence it follows from the constraints (13) and (15), that the operator T(i,k’ when 
acting on massless states must satisfy 
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By the symmetry of the indices a l  . . . u2, and d ,  . . . d 2 ,  this reduces to 

p ~ 1 ~ ~ ~ k ~ a , . , . a 2 , b 1 . . . b , k  = 0, 

P ‘ Tai...a2J 61 ..A ,... b 2 k  0, 

i = l , .  . .2j 
i = 1 ,  . . .  2k -ba ( j k )  

and in particular we must have 

(19) 
The identity (19) will have very strong implications when we consider T(jSk’ to be the 

generators of a graded extension of the PoincarB algebra. For instance, if we take T(jYk’ 
(the generators of the ‘supersymmetry’ algebra (ll)), and 

investigate massless (P2 = 0) representations of the algebra, then 0””-1/2’ must satisfy 
the constraint (19). Moreover this constraint must be consistent with the algebra in the 
sense that, if we consider the anticommutator (llb) 

pa b ( j  k )  Ta; ... a,, il..,b2k C O -  

to be Q ( i , i - l / Z )  and O(i-l/%i) 

and apply the operator pbal to both sides, we must consistently get zero when we are 
restricted to massless states. Clearly this is  always true for the left-hand side because of 
the constraint (19); however, applyingpbal to the right-hand side of (1 lb) will only give 
zero from those terms involving Paid, ( i  = 1, . . . 2j) (because P2 = 0) and it is straight- 
forward to see that the remainder will not in general be identically zero. The only 
situation where the right-.hand side will be identically zero is when there are no E tensors 
present, in which case pbal will always contract with P a l d l  to give zero by P2 = 0. The 
algebras with no E tensors present are precisely those with spinor generators Qt’2*0) 
and Q?*1/2’-the conventional supersymmetry algebras (Fayet and Ferrara 1977). It is 
the requirement that for higher spin, odd generators Q(’*’-’/2’ and o(’”1’2*t’, j > 4, the 
anticommutator {a, a} be constructed from Pab: together with E tensors that prevents 
the algebra from being compatible with the usual helicity constraints for massless 
particle states. We therefore conclude that, apart from conventional supersymmetry, 
massless representations of graded extensions of the PoincarB algebra are forbidden. 
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